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Abstract

An essential part of modern compilation systems is term rewriting, which translates the

user-specified program into an equivalent format which is faster to execute. For example,

many compilers will replace instances of x× 2 with the faster bit-shift operation x ≪ 1.

Typically, rewrites are applied according to a pre-defined ordering created by the compiler

designer; in such a system, each rewrite operates on the output of its predecessor. This is

often problematic, as rewrites are destructive, meaning that a poorly chosen rewrite rule

can prevent future rules from finding better optimizations. In other words, the order in

which rewrites are applied affects the final outcome; this is known as the phase ordering

problem.

Equality Saturation is an algorithm for term rewriting which aims to solve this problem

by simultaneously exploring all possible variants of a program that can be derived from

the set of rewrite rules before extracting the best one. This is achieved by building an

equivalence graph (e-graph) data structure which can efficiently encode many equivalent

programs into a single graph. As each rewrite is applied, nodes can only be added to the

graph, creating new possible equivalent programs; once the application of rules no longer

modifies the e-graph, it is said to have reached saturation as it encodes every possible

program representation, and terminates. While equality saturation is promising, and has

been proven on a number of domains ranging from CAD design [28] to neural network

optimization [48], challenges remain.

Namely, we find the saturation condition to be an unfeasible stopping point in even

simple tasks, as the e-graph, while efficient, may expand indefinitely under a variety

of circumstances. This can prevent equality saturation from finding good solutions, as

memory limits are reached before useful rule sequences can be applied. Because of this, we

propose Omelette, a Reinforcement Learning system which learns rewrite rule application

orderings to intelligently build the e-graph such that superior solutions can be found

compared to modern approaches.

We demonstrate that Omelette can improve solution quality by up to 100% over the cur-

rent state-of-the-art equality saturation solver across both propositional logic and mathe-

matical simplification tasks (chosen to represent both symbolic and numerical domains),

and can do so while staying within the bounds of tight e-graph memory restrictions.
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Chapter 1
Introduction

Traditional compilation systems apply optimizations sequentially, with each optimization

operating on the output of its predecessor. A major drawback of this approach is that the

quality of the generated code is dependent on the order in which these optimizations are

applied. This issue, known as the phase ordering problem, causes compilers to produce

sub-optimal programs when an optimization earlier in the chain inadvertently eliminates

the opportunity for a superior optimization in a later pass. Compiler designers must

therefore carefully tune the ordering of optimizations to maximize performance.

To address this challenge, Tate et al. [40] propose Equality Saturation, an algorithm which

simultaneously computes all possible optimized versions of the input program before se-

lecting the best candidate, thereby eliminating the threat of phase ordering altogether.

To enable representing potentially millions of equivalent programs within memory, equal-

ity saturation relies on the use of the E-Graph data structure [30] which leverages the

notion of equivalence classes to merge and de-duplicate shared terms between programs.

However, despite its promise, equality saturation’s practical use has been limited by its

implementation complexity and high computational demands.

The recent egg (e-graphs good) [45] equality saturation framework has partially addressed

these challenges by providing much-needed performance optimizations to the internals of

the equality saturation algorithm. In doing so, it has enabled its use in domains ranging

from linear algebra kernels [43] and deep learning computation graphs [48] to 3D CAD

programs [28], greatly improving over traditional optimization systems and proving the

efficacy of equality saturation’s core approach. Challenges remain, however, as many of

these works have needed to implement complex domain-specific mechanisms to further

work around the nuances of equality saturation to make their problem domains solvable

under finite memory and time constraints. If a general solution to these obstacles could

be incorporated into the equality saturation algorithm, it could theoretically be applied

to many more domains without the need for significant adaptation.

In this work, we have sought to first explore the theoretical and practical limitations which
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currently inhibit the success of equality saturation. In doing so, we observe that equality

saturation can unexpectedly fail in scenarios where a destructive rewrite system would

readily succeed due to the unique properties of the e-graph data structure. Following

this, we observe that equality saturation could be greatly improved by directing its search

through the space of possible rewrites in order to reach lower cost solutions within the

finite memory space allocated to the algorithm.

To accomplish this, we propose the use of Reinforcement Learning (RL) to guide the ap-

plication of rewrite rules to avoid rapid E-Graph expansion while simultaneously ensuring

that the rules applied enable the optimal equivalent program to be found. While RL has

previously been used to select rewrite rules in traditional compiler pipelines [8], the unique

properties of the E-Graph structure enable interesting design opportunities and have the

potential to make RL a more effective solution for this task. The exact contributions of

this work are enumerated below:

1. The identification of theoretical and practical limitations of equality saturation

which restrict the performance of state-of-the-art solvers.

2. The first formulation of equality saturation as a Reinforcement Learning task.

3. We present Omelette, an RL agent flexible enough to solve arbitrary equality satu-

ration tasks given only a language and a set of rewrite rules. To demonstrate this

ability, we evaluate Omelette upon both symbolic and numerical domains in the

form of propositional logic and equation simplification in order to test the agent’s

flexibility.

4. An extensive comparison between Omelette and the state-of-the-art equality satu-

ration solver, egg, across these two domains. In doing so, we show that Omelette is

strictly superior to the egg solver in terms of final solution quality on the domains

tested; in some cases, solutions can be improved by up to 100% compared to egg

within the same e-graph memory constraints.

2



Chapter 2
Background and Related Work

The purpose of this chapter is to provide the background in equality saturation and

reinforcement learning necessary to contextualize our proposed solution, Omelette. We

begin with the underlying theory of equality saturation and RL before progressing to the

design of the current state-of-the-art equality saturation solver, egg. Finally, we discuss

related work in applying RL to graph optimization tasks.

2.1 Equality Saturation Overview

Equality saturation emerged from the inherent ordering-based complexities of code op-

timization. Informally, it is best understood as an attempt to search over all potential

optimization orderings at once in a more efficient manner than exhaustive enumeration.

This section presents the root problem addressed by equality saturation as well as the

benefits underlying this technique.

2.1.1 Term Rewriting

Term rewriting [7] refers to a process by which expressions (known as terms) are trans-

formed according to a set of rules into alternative representations which are beneficial

by some cost metric. For example, the simplification of a mathematical expression can

be thought of as a term rewriting task which many are familiar with. Just as simplify-

ing an equation makes it easier to interpret by a human, term rewriting is used at the

heart of compilers [15], logic programming [22], proof assistants [10], and computer alge-

bra systems [6] to improve efficiency for machines. However, unlike shortening equations,

rewriting computer programs generally requires optimizing a more complex metric related

to code execution time.

Beginning with a term t and a set of binary rewrite relations R = {l → r}, the optimizer

searches for the pattern l in t, producing a list of matches σ which map variables in l to
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Figure 2.1: AST and term graph representations of the expression (y × 2)/2. Note how
the term graph is able to share the subterm 2.

subterms of t. The values of σ are then substituted into r, denoted as r [σ]. To illustrate

this process, consider the following problem:

t = (y × 2)/2

R = {(x× 2) → (x ≪ 1)}
(2.1)

First, the left-hand side of the singular rule we’ve defined is searched for within t, yielding

a match upon the subterm (y × 2). The right hand side of the rewrite rule’s values are

concretized with σ = {x : 2}, yielding r [σ] = y ≪ 1, which is then substituted into t to

form a revised t′ = (y ≪ 2)/2.

This rewrite rule can be found in many compilers, and is known as a strength reduction,

a type of optimization in which an expensive operation is replaced with an equivalent yet

less expensive one. However, this example illustrates a key challenge with term rewrit-

ing systems: the order of rule application matters, as each substitution is destructive.

Considering our prior example, a superior optimization would be to “cancel out” the

multiplication and division by two through constant folding. However, the rewrite we

performed has hidden this opportunity by introducing a bit-shift.

This is a classic example of the phase ordering problem in compiler literature, in which

the order of optimizations must be carefully considered in order to prevent optimization

passes from interfering by obscuring each other’s optimization opportunities. A significant

corpus of work treats phase ordering as a combinatorial optimization problem, and seeks

to solve it through methods such as exhaustive search via backtracking, genetic algorithms

[16], integer linear programming [17], and reinforcement learning [8], with varying success.

Nonetheless, phase ordering remains a crucial challenge in term rewriting systems.

Term Graphs

Term rewriting systems most commonly represent expressions as a graph data structure,

known as a term graph, rather than the more familiar Abstract Syntax Tree (AST). Unlike
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ASTs, term graphs can share sub-expressions between nodes. On the other hand, each

node in an AST can have only one parent, resulting in the redundant computation of

identical terms. Figure 2.1 highlights this difference.

Termination and Confluence

When constructing a term rewriting system, it is surprisingly easy to define rules which

enable themselves, creating recursive rule applications which can be repeated indefinitely.

According to Dershowitz and Jouannaud [7], rewrite systems—as successors to lambda

calculus—are known to be Turing-complete in their most general form. Thus, they inher-

ent their predecessors potential for non-termination as well as several key concepts which

we shall now discuss.

Formally, an object l is said to be reducible if there exists some r in R such that l → r;

otherwise l is said to be in normal form. A rewriting system is terminating if there

exists no infinite chain t0 → t1 → t2 → · · · . For a system to be terminating, every

object must have at least one normal form. A rewriting systems is said to be confluent

if for a term with multiple reductions (M → M1 ∧ M → M2 . . .), all produced terms

are guaranteed to eventually converge to an identical term following a series of further

reductions (M1 →∗ Mc ∧ M2 →∗ Mc . . .).

Importantly, if a term rewriting system is confluent and terminating, it can be used to

to prove equality between expressions. Taking two expressions s and t, apply equalities

from left to right as long as possible on each term to reach s′ and t′, which, if s and t

are equivalent, will also be equal. Crucially, this method does not depend on the order

in which rewrite rules are applied; confluence ensures that every sequence will lead to the

same result.

Term Rewriting and Formal Grammars

By labelling terms as terminal or nonterminal, a link between rewriting systems and

formal grammars can be established. A formal grammar can be thought of as a special

case of rewriting system where the alphabet is divided into terminal and nonterminal

symbols, and all inference rules are local and involve a nonterminal on the LHS. The

computation starts from a specific initial nonterminal and halts when the word contains

only terminals. The set of possible resulting words is the language defined by the grammar.

Thus, given this correspondence we can talk about the language defined by a given term

rewriting system as the set of words which may be generated by its equivalent grammar.

2.1.2 E-Graphs

An equality graph (e-graph) is a data structure capable of efficiently encoding a congruence

relation over many expressions [30]. Formally, an e-graph contains a set of equivalence
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classes (e-classes), with each containing a set of equivalent e-nodes. Each e-node consists

of an operator (such as ×, ≪, or terminals like 2) and edges connect e-nodes to their e-

class children. Of course, the relevance of such an e-graph to the term rewriting problem

depends on what exactly is meant by equivalent. Formally, two nodes are said to be

equivalent if they satisfy an equivalence relation—a binary, reflexive, symmetric, and

transitive relation according to Rosen [34, sec. 9.5]—defined for the term rewriting system.

For the rest of this work, two e-nodes will be considered equivalent if the substitution

of either one with the other does not change the meaning of the expression they are

constituents of. In the case of compilers, this would imply that the compiled code produces

the same output regardless of which node in an e-class is used.

Notice how an e-graph in which each e-class is a singleton (Figure 2.2a) is functionally

identical to a term graph (Figure 2.1a) and has the same properties. Thus, an e-graph

brings the same advantage of being able to contain cycles over standard Abstract Syntax

Trees. Therefore, they are able to represent infinitely many expressions, such as (a× 1),

(a× 1× 1), and so on, all within a fixed memory space.

Although originally developed for use in automated theorem provers (ATPs), recent work

has utilized e-graphs to implement term rewriting systems which address the phase-

ordering problem through a method known as equality saturation [40]. As we will see,

equality saturation can greatly reduce the combinatorial explosion of rewrite sequences

seen with classic term rewriting systems.

2.1.3 Equality Saturation

Having previously discussed the phase-ordering problem, we can now consider how to solve

it. A brute-force method would involve generating all possible sub-expressions repeatedly

in a breadth-first manner with memorization of previously seen expressions until no new

version is generated. This process suffers from combinatorial explosion, however, it serves

as the basis upon which equality saturation, shown in Listing 2.1.3, improves upon.

1 def equality_saturation(expr, rewrites):

2 egraph = initial_egraph(expr)

3

4 while not egraph.is_saturated_or_timeout():

5 for rw in rewrites:

6 for (subst, eclass) in egraph.match(rw.lhs):

7 eclass2 = egraph.add(rw.rhs.subst(subst))

8 egraph.merge(eclass, eclass2)

9

10 return egraph.extract_best()

Listing 2.1: The Equality Saturation algorithm.
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Figure 2.2: The same rewrite rule applied to an E-Graph. Dotted lines represent e-classes,
and edges connects e-nodes to their e-class children. Notice that applying the rewrite rule
x × 2 → x ≪ 1 is purely additive; no information is lost, thus eliminating the phase-
ordering problem.

Equality saturation receives an input program p, and constructs an e-graph E that rep-

resents a set of expressions equivalent to p, before extracting the “best” program from

E according to a defined cost metric (typically performance). To construct the e-graph,

pattern-based rewrite rules are repeatedly applied. Notably, these rewrites are exclusively

additive; they can never remove information from the e-graph. Theoretically, this prop-

erty eliminates the need for the careful ordering of rules seen in current compilers, as any

sequence will result in the same e-graph. Equality saturation thus enables e-graphs to rep-

resent an exponential number of equivalent programs simultaneously in a memory-efficient

manner.

Upon reaching saturation, the point at which applying additional rewrite rules has no

further effect on the e-graph, it can be said that E represents every equivalent form of p

with regards to the rewrite rules available. Consider the commutative rewrite x+y → y+x.

After applying it once, the re-applying it results in no new information being added to

the e-graph, as it already contains the x, +, and y terms, as well as the edges between

them.

Extraction

After the e-graph has been saturated, an extraction procedure selects the optimal equiva-

lent term according to a cost function. While a bottom-up greedy traversal of the e-graph

suffices for simple cost functions, more complex domains have necessitated the use of

Integer Linear Programs (ILPs) and genetic algorithms to extract the best solution [45].

Due to this extraction procedure, an E-Graph can also be seen as an AND-OR Directed

Acyclic Graph (DAG) over expressions. Each E-Class is an OR node whose children are

equivalent expressions from which the optimizer chooses from. Each operator is an AND

node whose children must all be picked if the operator itself is picked. We favor the terms

E-Graph and E-Class to emphasize that each OR node represents an equivalence class.

7



2.2 Reinforcement Learning

Reinforcement Learning (RL) [39] refers to a body of techniques used in optimizing se-

quential decision making processes. A common formalism for RL tasks is the Markov

Decision Process (MDP), which is defined as a 4-tuple (S,A,R, T ), which constitutes:

States. S is the state space. For example, in a chess environment, the state space would

be every possible configuration of pieces on the board.

Actions. A is the set of actions available at each state.

Rewards. R is a reward function R(s, a), mapping each state-action pair to a real value

used to inform agent behavior by incentivizing good actions while punishing negative

ones.

Transition Function. T is a transition function T : S×A → S, specifying how applying

an action at a given state transitions the environment to a new state.

Notably, MDPs assume the Markov Property holds true, meaning that the effects of an

action taken in a state depend only on that state and not any prior history.

The goal of reinforcement learning is to learn a policy π which maps each element of S to

an action in A in order to maximize the total reward accumulated by an agent throughout

each episode, a sequence of states and actions between an initial and terminal state.

While an agent seeks reward, if it simply chose the highest reward action at each state, it

would constitute no more than a greedy search, missing potential better outcomes which

require transitioning through lower reward states to reach a higher one. Therefore an RL

agent does not optimize for reward directly, but rather for expected value, the discounted

sum of all future rewards presuming the agent follows an optimal policy from the current

state onwards. The standard way to model this value balances reward for the current

state with the value of future states,

Gt = Rt+1 + γGt+1

0 ≤ γ < 1,
(2.2)

where Gt is the current state value, Rt+1 is the reward given by the next action, γ is

the discount factor, and Gt+1 is the future-state value defined recursively. From this

recursive formulation it can be seen how the agent chooses to prioritize the current state

compared to its future according to the discount factor γ. The geometric fall-off of γ is

not coincidental as it guarantees that the infinite series defined by Eq. (2.2) converges to

a finite number for γ ∈ [0, 1).

lim
n→∞

n∑
k=0

γkRt+k+1 =
Rt

1− γ
(2.3)
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2.2.1 Approximate Solution Methods

While an MDP can be solved to find the optimal policy through the use of dynamic pro-

gramming to evaluate every possible action sequence, this is not practical in environments

with large state spaces. For example, the number of possible camera images is larger than

the number of atoms in the universe; in such cases the optimal policy or value function

cannot be found even in the limit of infinite time and data [39].

Furthermore, in such tasks it is likely that many states encountered by the agent will never

have been seen before; therefore to make sensible decisions the agent must generalize

from prior encounters with similar states. In other words, experience with a limited

subset of the state space must be generalized to approximate over a much larger space.

To accomplish this, neural networks may be used to approximate the policy and value

functions.

However, the use of deep learning techniques bring with them new challenges when applied

to RL; for example, supervised learning typically relies on the concept of independent and

identically distributed (i.i.d) data, which assumes that training data is sampled from the

same distribution. In an RL task, we have no way of ensuring this, as training data is

limited to whatever states the agent has experienced through its actions, which are likely

to be focused in certain sectors of the state space; this heightens the risk of the agent

getting stuck in local optima.

2.2.2 Proximal Policy Optimization

Proximal Policy Optimization [36] is a policy-gradient RL algorithm which learns a

stochastic policy over the environment. Notably, PPO is an example of an actor critic

model, which means it is constituted of two separate networks: a actor policy network

mapping observations to actions, and a critic network mapping observations to predicted

values.

PPO’s primary innovation is its stability ; building off Trust Region Policy Optimization

(TRPO) [35], PPO ensures that the agent’s policy evolves smoothly over the course of

training by clipping policy updates which are too drastic; this is a crucial innovation, as

not doing so results in destructive policy updates in which an overly-large policy update

can shift the agent into a worse portion of the search space which it can then never

escape from, ruining the training run altogether. By constraining policy adjustments,

PPO ensures the agent can recover from bad states throughout its training.

This recoverability property makes PPO an excellent candidate for usage in novel domains

where RL has never been attempted before and environment dynamics are unknown.

Therefore, while PPO is no longer the state-of-the-art in terms of absolute performance

[9], it remains well-suited for novel RL applications such as ours.
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2.3 Related Work

This section briefly describes relevant works which have influenced the overall design of

Omelette. We begin with a presentation and discussion of egg [45], the current state-of-

the-art equality saturation solver, as it serves as the primary benchmark of comparison

for this work. This is followed by an overview of the nascent field of Graph Reinforcement

Learning (GRL) and its applications to the related topic of combinatorial optimization.

2.3.1 The egg Equality Saturation Framework

The recent egg (e-graphs good) [45] framework has revitalized the field of equality sat-

uration by providing a modern and well-optimized toolkit for its usage across different

domains. As egg has become synonymous with equality saturation, and is currently the

only mature library available, it is used as the basis for this work and is the primary

means of comparison for our proposed method.

Willsey et al. [45] motivate the design of egg with two goals in mind. The first is con-

structing a domain-independent equality saturation system which allows domain-specific

extensions to be injected with little modification. This was necessary as several previous

works [31, 40, 46] had to re-implement equality saturation in its entirety due to lacking

such an ability. The second objective of egg is to make equality saturation feasible by

tremendously increasing performance via a novel technique known as rebuilding. Rebuild-

ing is an amortized means of restoring e-graph invariants between iterations of the loop

shown in Listing 2.1.3 in a manner capable of providing asymptotic speed improvements

over previous approaches.

While the details of these additions are beyond the scope of this work, their benefits

were sufficient to allow egg to become the de-facto standard equality saturation system.

Willsey et al. [45] show that egg provides several orders of magnitude of improvement

over the previous work of Panchekha et al. [31] on floating point rewrite optimizations.

Furthermore, they show egg yields a 1000x speed up to the CAD deconstruction system

of Nandi et al. [27].

Discussion Egg is a significant improvement over previous equality saturation solvers

in terms of both efficiency and flexibility. However, its implementation requires several

ad-hoc solutions to memory constraints. The most relevant of these are the addition of

a node limit and a timeout. Both of these changes to the theoretical equality saturation

algorithm have ramifications in terms of the execution speed of egg and its ability to find

optimal solutions. These limitations will be further discussed in the following chapter.
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2.3.2 Graph Reinforcement Learning

Recent lines of work have explored the use of RL for combinatorial optimization tasks,

particularly on graph domains. These include the Traveling Salesman Problem, the Max-

imum Cut Problem, and the Bin Packing Problem (see Mazyavkina et al. [21] for an

overview). While these methods are not directly applicable to an equality saturation-

based RL solution operating on E-Graphs, they can provide insight into the strengths

and weaknesses of RL when exploring large graph state spaces.

A combinatorial optimization problem is a discrete optimization problem defined over a

set of elements V with a cost function f : V → R. While the set V may be finite, many

combinatorial optimization problems have exceptionally large state spaces depending on

initial parameters, with no known means of efficiently finding the global optimum. Ac-

cording to Mazyavkina et al. [21], RL has been applied most frequently to the Traveling

Salesman Problem (TSP) and the Capacitated Vehicle Routing Problem (CVRP). In the

case of the CVRP, the RL design of Lu et al. [19] was shown to outperform all baselines

considered by Mazyavkina et al. [21]. This success is not universal, however, it does serve

as evidence for the overall ability of RL to handle complex optimization problems on

graphs, providing validation for our proposed agent which operates upon E-Graphs.

Mazyavkina et al. [21] also indicate several limitations of the previous applications of RL

to combinatorial optimization. The first of these is that learning based solutions only

outperform Google’s OR-Tools [32] Linear Programming solver for small TSP graphs;

this suggests that RL struggles with the larger action spaces which occur when scaling up

the graph. The second relevant limitation is that the training times of RL methods are

much longer than algorithmic approaches, undermining its real-world practicality.

Of particular interest is the graph-based nature of these combinatorial optimization prob-

lems, as they serve as one of the primary applications of Graph Reinforcement Learning

(GRL). According to the GRL survey of Mingshuo et al. [24], graph data is particularly

difficult to handle in ML generally and RL in particular. The primary causes of this

challenge are the overall scale, discrete nature, and diversity of graph data. To handle

this, GRL employs Graph Neural Networks, described in the next section.

Graph Neural Networks

Traditional Deep Learning methods such as Multi-Layer Perceptrons (MLPs) struggle

with graph data, as graphs features complex relationships not expressible in Euclidean

space. Graph Neural Networks (GNNs) [50] seek to address this problem through ar-

chitectures designed specifically for graphs by utilizing relationships between nodes in

their predictions. MLPs, on the other hand, have no means of taking advantage of this

structural information which can be crucial to many graph-related tasks.

While simple GNN architectures such as Graph Convolutional Networks (GCNs) [14]
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convolve each node’s feature vector with those of its neighbors evenly, this method is

limited in expressivity, as nodes which have identical neighborhood structures will be

mapped to identical embeddings, resulting in a loss of higher-level graph information.

Graph Attentional Networks (GATs) [42], used in this work, improve upon GCNs by

weighing each neighboring node into the final node embedding using attention mecha-

nisms. This allows specific features of neighboring nodes to be weighed independently

into a node’s embedding, providing finer-grained control of each node’s representation

and thereby increasing expressivity.

While many GNN tasks perform classification or regression on a per-node basis, this thesis

involves using GNNs to make graph-level classifications. To enable this type of higher-

level prediction, pooling layers are typically used to combine individual learned node

representations into a single value [23]. Popular examples of this method include global

average pooling and sum pooling; the trade-offs of these approaches will be discussed in

the design of our agent.
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Chapter 3
Omelette: Deep RL For Equality Saturation

3.1 Overview

This section begins with an exploration of the theoretical limitations of equality satura-

tion by formulating scenarios in which it can be shown to unexpectedly never terminate

where a traditional term rewriting system would have, thus providing valuable insights

for those considering the use of equality saturation in their domains. Following this, the

practical limitations of current equality saturation systems which must operate within

finite memory and time requirements are discussed, providing solver designers with new

considerations on how the trade-offs they implement may be improved. Crucially, we

identify that both the theoretical and practical concerns of equality saturation arise from

the fact that saturation is not an achievable termination condition in real-world scenarios,

and that therefore phase ordering is re-introduced at the e-graph construction level. By

not accounting for this, equality saturation leaves significant performance opportunities

on the table.

Following this discussion of the limitations of existing equality saturation techniques, we

present Omelette, a novel Reinforcement Learning approach to equality saturation which

seeks to address these challenges in a domain-agnostic way. Unlike classical equality

saturation methods which exhaustively apply all available rewrite rules in every iteration

until saturation, Omelette discards the saturation objective and is therefore capable of

both choosing which rules to run and prioritizing them in order to avoid non-termination

or explosive growth of the e-graph. On this basis, Omelette is postulated to better account

for the aforementioned theoretical and practical limitations of equality saturation than

existing solvers, while simultaneously improving upon already saturable tasks by reducing

the number of rewrite rule applications necessary to find the optimal solution.

In describing Omelette’s design, we provide the first-ever formulation of equality satura-

tion as an RL task before presenting a collection of hypotheses with regards to its expected

behavior. Finally, the criteria by which we will evaluate the agent are discussed.
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3.2 Limitations of Equality Saturation

As previously mentioned, both the theoretical and practical limitations of equality satu-

ration arise from the unexpected re-emergence of the phase ordering problem within the

realm of e-graph construction. However, while the challenges presented are related, there

is an important distinction to be made: the theoretical limitations described apply to an

equality saturation solver even with unlimited computation time and memory space, while

the practical limitations discussed are caused by the methods used by existing e-graph

solvers to handle finite memory and time constraints even in scenarios in which equality

saturation will eventually terminate.

3.2.1 Theoretical Limitations

While the difference between equality saturation and term rewriting with regards to their

ability to terminate remains an open research question, we will provide our observations in

this section to illuminate scenarios where their behaviors diverge unexpectedly. The crit-

ical question is to identify why reasonable rule sets can lead to the unbounded expansion

of the e-graph and therefore non-termination during equality saturation.

As term rewriting systems may be as powerful as Lambda calculus, they inherit not only

its non-termination potential but also the inherent difficulty of predicting non-termination,

as codified in the Halting Problem [38]. As such, this work is not concerned with non-

termination as a phenomenon generally present in all rewriting systems. Instead, we

highlight scenarios in which a non-terminating rewrite system which terminates under a

given rewrite ordering using destructive term rewriting methods fails to do so when applied

with equality saturation. These situations are unintuitive and not easily predicted, and

form a core yet under-discussed pitfall of equality saturation.

Building on the work of Willsey et al. [44], we present a scenario which demonstrates that

equality saturation will never terminate even when using a rewrite order which terminates

in an equivalent destructive rewrite system; this is due to the fact that the equality satu-

ration produces an unbounded number of e-classes which expand the e-graph indefinitely

and prevent termination under all circumstances. To begin, consider the following set of

rewrite rules:

inc : h(g(x, Z)) → h(g(f(x), Z))

dec : g(f(x), y) → g(x, f(y))

clear : g(Z, y) → Z,

(3.1)

where Z is a terminal and x and y are variables. This set of rules resembles counting in

Lambda calculus with Z representing zero and levels of applications of f upon it being

similar to Church numerals such that f(Z) can be interpreted as 1 and f(f(Z)) as 2.
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Using this allegory, the first rule, inc, increments the first parameter x of g by one each

time it is applied, with the system adding this higher increment term to the e-graph as

a new e-class. Meanwhile, the second rule counts down by eliminating one application of

f from x and incrementing the second parameter of g by one, thereby keeping the term

in the e-graph. Finally, the last rule detects when the system has successfully counted

the first argument of g to zero and reduces the entire term to the terminal Z. Therefore,

in a standard term rewriting system in which inc has been applied i times, it takes i

applications of dec followed by a single application of clear to terminate. For example,

the following equation displays an input expression and series of rules applied to it which

results in a terminal where no rules are applicable:

h(g(Z,Z)) =⇒ inc → inc → dec → dec → clear =⇒ Z (3.2)

However, given this same input and rule application sequence, we can demonstrate non-

termination in equality saturation as it is unexpectedly able to continue applying inc even

once the terminal Z has been proved equivalent to the input expression, thereby infinitely

expanding the e-graph and preventing saturation (and therefore termination) from being

reached. This is because the original expression remains present within the e-graph (and

therefore matchable for inc) even once it has been proven equivalent and merged into the

same e-class as Z, even though we intuitively know that any additional applications of

inc are ultimately equivalent to Z. As the saturation condition required for termination

requires a complete application of all rules throughout which the e-graph remains static,

the equality saturation algorithm will never terminate in this scenario even though a

regular, destructive term rewriting system is guaranteed to. In other words, it can be said

that the need to apply all rules in equality saturation makes termination impossible in

this domain; for the algorithm to terminate, it would be necessary to stop applying inc

altogether.

Summary. In this section wwe have illustrated a theoretical limitation of equality

saturation by demonstrating that its use of the e-graph data structure results in non-

termination even under rewrite sequences which terminates under traditional, destructive

term rewriting. To solve this problem requires reorienting equality saturation around an

objective other than saturation; this serves as a key justification for the design of our

proposed RL solution, Omelette, presented later in this chapter.
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3.2.2 Practical Limitations

While the previous section described scenarios in which equality saturation will never

terminate, this section aims to demonstrate that rule ordering does have a great effect

on the efficiency and practicality of equality saturation in real-world conditions under

finite memory and time constraints. This is because, as we will show throughout this

work, even simple tasks which are trivial through other optimization techniques have a

tendency to exceed the limits of equality saturation by growing the e-graph rapidly until

a node or time limit is reached before the best solution can be found. In this section, we

will present a simple scenario in which the optimal solution to a task is unreachable by

equality saturation as a memory limit is reached before it can be added to the e-graph.

Following this, we demonstrate how a different ordering of rule applications can naturally

solve this problem, highlighting the need for intelligent rewrite rule sequencing.

Intuitively, an optimal equality saturation algorithm would apply rewrite rules in the

sequence which most quickly builds an e-graph which contains the optimal reduced ex-

pression. However, equality saturation as proposed by [40] simply applies every rewrite

rule in a loop until saturation or a memory limit is reached, offering no direction to e-graph

growth. While modern equality saturation solvers such as egg now offer exponential back-

off on rules which expand the e-graph too quickly to improve fairness and enable other

rules to have a chance to execute before memory or time limits are exceeded, the solution

is not fully sufficient as demonstrated by the many subsequent applications of egg which

have needed to devise domain-specific methods to address this problem independently

[29, 45, 48].

Equality saturation is inherently computationally expensive as it must simultaneously

evaluate every possible equivalent representation of a target program. While the use

of the e-graph data structure drastically reduces the memory needed for this approach,

certain rewrite rule sequences have the potential to explode the e-graph by adding ex-

ponential numbers of nodes, negating these benefits. In this scenario, saturation can

never be reached, as it is not possible to simultaneously represent every possible program

representation within finite memory-space.

To illustrate this, we have identified a simple propositional logic expression in which this

scenario arises:

(x ∧ y) ∨ (x ⇒ z) = (y ∨ (x ⇒ z)) (3.3)

Where the left-hand-side is input expression to be optimized. The right-hand-side is the

optimal representation of the input expression, and is reachable through the use of a clever

sequence of rewrite rule applications (see Table 4.1 for the complete list of propositional

logic rewrite rules available).
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Figure 3.1: The size of the e-graph over time with a 10, 000 node limit applied. The
Theoretical Minimum is the minimum number of rule applications necessary to reach the
optimal cost. The second dotted line indicates the point at which egg can successfully
extract the optimal cost solution; note that it will still continue growing the e-graph
infinitely beyond this point as it has no means of stopping in this scenario until a timeout
or node limit is reached.

This simple task causes egg to rapidly expand the e-graph due to unintuitive relationships

between rewrite rules. Figure 3.1 displays the size of the e-graph over the course of egg’s

execution; interestingly, the e-graph remains at a reasonable size for the first 42 rule

applications before growing exponentially until node limit is reached. Figure 3.2 denotes

the number of applications of each rule, as well as the effect of each rule on the e-graph

size. From the figure, it is immediately apparent that the dist_or_and rule, denoted as

dist or and: (a ∨ (b ∧ c)) → ((a ∨ b) ∧ (a ∨ c)) (3.4)

is responsible for over 6, 000 nodes being added to the e-graph. However, this rule is

applied four times before its explosive effects are felt; in fact, a causality analysis indicates

that 9 other specific rewrite rules must be applied before dist_or_and can grow the e-

graph exponentially. This scenario highlights the difficulty in predicting precisely when

a given rewrite rule will explode the e-graph; it can be the case that only after a specific

sequence of prior transformations can a rule become troublesome. This makes manually-

defined heuristics to determine rule applications unfeasible, especially as a rule, such as

dist_or_and, may be necessary to reach the optimal expression, and only becomes a

problem when combined with a specific sequencing of other rule applications.

The first dotted line in Figure 3.1 indicates the theoretical minimum number of rewrite

rule applications necessary to reach the target expression, whereas the second dotted line

indicates the first point at which egg’s solver could be terminated to return the target

expression. As shown in the figure, theoretically only 9 rule applications are needed to

obtain the optimal cost, while the e-graph built by egg takes 28 applications to reach
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a situation in which the optimal expression could be extracted; in other words, egg ap-

plies over 3x more rules than necessary to build an e-graph which contains the optimal

expression. This problem arises even when e-graph explosion is not a concern, and is

due to the fact that egg (and equality saturation approaches in general) do not priori-

tize rule applications; presumably, this design choice is made as in an optimal scenario

equality saturation eliminates phase-ordering altogether by reaching saturation, and thus

the sequence of rule applications does not matter. However, as shown here, phase order-

ing remains an efficiency problem in even simple scenarios, and should be an important

consideration for performance by solver designers.

Additionally, in e-graph explosion scenarios such as this one, egg continues expanding the

e-graph indefinitely past the point at which the optimal expression could be extracted until

the node limit is reached, thereby unnecessarily wasting both computation and memory

resources.

Summary. This section has raised three practical concerns with equality saturation.

Firstly, the e-graph can expand in size unpredictably, such that it is unfeasible for

manually-specified heuristics to detect when such a scenario could occur. Secondly, we

note that egg has no method of knowing when to stop when saturation is impossible;

it will continue to expand the e-graph until a node or time limit is reached, even if it

could have extracted the optimal expression long ago. Thirdly, egg does not prioritize

its rule applications, resulting in it taking significantly longer to reach a point where the

optimal solution could be extracted from the e-graph; this holds true even in scenarios

where e-graph explosion is not a concern. In combination, these three problems set the

stage for our learning-based approach proposed in the next section.
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3.3 Deep RL for Equality Saturation

This section presents Omelette, a Deep Reinforcement Learning variant of equality satu-

ration which seeks to address the challenges laid out in the previous section. Recognizing

that the saturation condition for termination is unlikely to be reached in any rewriting

system of even moderate complexity, we instead design our agent with the objective of

finding an approximate best solution as quickly as possible within the fixed memory and

time constraints provided to the solver. To accomplish this, we give our agent the ability

to choose both which rewrite rules are applied as well as their order in the hopes that it

can learn the task of e-graph construction in order to minimize both the e-graph size and

the number of rule applications necessary to produce solutions superior to those achiev-

able by existing solvers. As the objective of our approach is no longer equality saturation,

we propose the term equality hydration to more accurately reflect our method.

We hypothesize that Omelette should be able to find better solutions than egg on tasks

where egg hits the e-graph node limit before the best solution can be discovered, as the RL

agent should be able to intelligently learn which actions are needed to reach the solution

while avoiding actions which increase the e-graph size unnecessarily. Additionally, by not

running until the node limit is reached on tasks that don’t require it, Omelette has the

potential to reduce the computational and time requirements of equality saturation.

First in this section is a discussion on why we chose to build upon equality saturation

in light of the limitations discussed previously, rather than searching destructive rewrite

sequences directly upon the input expression. Following this, several experimental hy-

potheses are formulated to guide the evaluation of the RL agent. A high-level overview

of the Markov Decision Process (MDP) of the RL agent is then provided, before diving

into specific modifications and additions to the RL model designed to aid it in handling

the equality saturation task. The section concludes with a description of the criteria by

which the agent will be evaluated.

3.3.1 Why RL with Equality Saturation?

As we have sacrificed the goal of saturation, it may be questioned why we build upon

equality saturation rather than training an RL agent to directly apply traditional, de-

structive rewrites upon the input expression. In response, we theorize that the unique

properties of the e-graph data structure could enable an RL agent to learn much faster

and more effectively.

This is because, while the e-graph cannot efficiently encode all possible term rewriting

systems (as we have shown in the prior section), it can still reduce the search space by

orders of magnitude, as many possible rewrite sequences can result in the same e-graph

(See section 2.1.2). Therefore the agent only has to learn a policy over this smaller space

of possible e-graphs rather than possible rewrite sequences.
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Additionally, because rewrites are non-destructive in equality saturation, even if the agent

chooses a sub-optimal rewrite, it is never prevented from later correcting itself; in other

words, portions of the search space are never blocked off by a bad action choice (except

in cases where a node limit is reached). This means that the RL agent’s exploration has

greater potential to lead to better states which can inform its policy function than if a

destructive rewrite system were used. This should theoretically speed up training and

enable better solutions to be found faster.

3.3.2 Hypotheses

Now that we have discussed the justification for combining RL with equality saturation

to form our new method of equality hydration, we present a series of hypotheses regarding

its abilities:

1. The RL agent is capable of learning significantly shorter sequences of rewrite rule

applications needed to obtain solutions for tasks across all domains when compared

to egg, thus preventing e-graph explosion.

2. The agent can learn non-obvious action sequences in order to achieve a lower cost

final expression than existing solvers within the node limit specified.

3. Omelette is capable of optimizing expressions from any language without modification

to the agent, given only a list of rewrite rules and the set of operators available.

3.3.3 MDP Definition

To summarize the design of the RL agent and environment, it is common to describe it

through the lens of a Markov Decision Process (MDP) consisting of states, actions, and

rewards. See Section 2.2 for background on MDPs and RL.

States

Each state s is the complete e-graph G at the current timestep. To construct a state,

egg is queried to retrieve a list of e-classes and their constituent e-nodes. An encoding

procedure builds a graph from this list, where each node has the attributes shown in

Table 3.1. Each e-class node has an edge pointing to each of its member e-nodes, and

each e-node has edges pointing to its children e-class nodes.

The reason e-classes are represented as nodes rather than as attributes of member e-

nodes is because the number of e-classes can vary wildly throughout execution, as they

are created and merged by the equality saturation algorithm. Therefore it is not possible

to uniquely identify them within a fixed-size embedding.

Additionally, it should be noted that this encoding scheme does not encode the values

of all scalar nodes present in the input expression. Instead, only terminal scalar values
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Feature Type Applies to Description

is eclass Boolean e-classes Whether the node represents an e-class.

is enode Boolean e-nodes Whether the node represents an e-node.

is scalar Boolean e-nodes Whether the node represents an un-
known scalar (i.e. one not matched for
in any rewrite rules).

is terminal Boolean e-nodes Whether the node represents a known
terminal (i.e. one that is searched for by
rewrite rules).

onehot terminal One-hot e-nodes One-hot encoding of the known terminal type.

onehot operator One-hot e-nodes One-hot encoding of the operator type.

onehot avail rules One-hot e-classes One-hot encoding of the rules applicable
to nodes within this e-class.

Table 3.1: The feature representation of each node within our E-Graph representation.

which are part of a left-hand-side pattern in the rewrite rule set are included through a

one-hot encoding. For example, given a rule (x ∗ 0 → 0) and an input expression (27 ∗ 0),
the e-node representing 27 will not contain the numerical value 27, while the e-node

representing 0 will, as it is used for matching. This is a crucial distinction, as it ensures

that the agent does not over-fit on arbitrary specific values, but rather only is concerned

with values which may be useful for rewrite matching. Additionally, because the set of

rewrite rules, and therefore the set of terminals, are known in advance and static between

problems within a domain, terminals can be automatically one-hot encoded.

It would be useful at this stage to mention that although many RL-based applications

model their tasks as MDPs, their domains are often not truly Markovian. For example,

the seminal work of Mnih et al. [26] uses a finite sequence of previous state-action pairs to

decide upon a decision at the current state. Unlike such applications, the MDP as defined

in this work obeys the first-order Markov property as all decisions are made entirely on

the current e-graph structure.

Actions

The set of rewrite rules R in the provided language are one-hot encoded to form the action

space of the agent. When an action a is chosen, the rewrite rule is applied at every possible

location in the e-graph simultaneously. This design massively reduces the action space

versus one in which the agent must also choose where to apply the action, but naturally

comes with the limitation of potentially eliminating some solutions from being found if a

rule application over all locations expands the e-graph beyond the node limit.
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Additionally, two special actions are provided to the agent:

End. The end action terminates the current episode, and should only be applied when

the agent believes there is no benefit to additional rewrite rule applications. This

enables early stopping to prevent equality saturation from needlessly running until

the node limit is reached, as shown in Section 3.2.2.

Rebase. The second special action, rebase, aims to enable recovery from e-graph ex-

plosion by extracting the best expression from the current e-graph, and creating a

new e-graph from this expression to be used as the base for future actions. This

effectively shrinks the e-graph back down to a manageable size so that optimization

can continue further than otherwise possible. However, this action can potentially

inhibit future optimization opportunities which are dependent on paths in the prior

e-graph not included in the extracted result. However, since all rules are strictly

additive, there is no reason the agent cannot restore these paths through further

actions if necessary, at the cost of additional steps.

Rewards

Reward engineering is often considered the most important aspect of RL agent design [39].

This is because there are many ways for reward functions to unintentionally promote bad

outcomes. For example, if the reward function is too sparse such that it fails to guide

the agent’s search, or is manipulable by the agent such that it can receive positive reward

without accomplishing the intended goal, RL will fail for the given task.

In our domain, the reward of a (state, action) pair is dependent on a number of factors

beyond raw cost reduction to ensure these problems do not occur; this is necessary, as cost

does not smoothly decrease with rule applications, thereby creating a sparsity problem.

The reward calculation constructed for the various scenarios which arise during equality

saturation are enumerated below. It should also be noted that all rewards are normalized

to the range [−1, 1] to stabilize training.

Saturated Rewrites. If the application of a chosen rewrite rule fails to modify the e-

graph, it means that the rule has already been fully saturated into the current

state, and further applications provide no benefit. In this case, the agent receives

a reward of −0.5. This was chosen so that the agent does not waste time applying

already-saturated rules in the future; rather, it should attempt to learn the minimal

sequence of rules required to reduce expression cost.

Improved Cost. Cost reduction is the ultimate goal of term rewriting, and therefore the

most important aspect of our reward function. A key constraint of this design is that

the agent should be willing to suffer hundreds of negative reward intermediary states

through which cost stays constant in order to obtain a small improvement later in

execution. To achieve this, we first observe that cost is a positive and nonincreasing
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function; because the E-Graph is purely additive (as described in Section 2.1.2),

cost can only be decreased or stay the same throughout the equality saturation

procedure. This means that the cost at the initial state is the maximum cost that

will be observed through the episode. This enables us to normalize our reward by

dividing the observed cost improvement by this maximum to obtain a reward in the

range [0, 1], thereby allowing reward design to be kept constant between domains

which operate at wildly different cost scales (as some tasks equality saturation may

be used for involve improving runtime by 0.01s, while others operate using integer

cost metrics of “abstract syntax tree depth” which may have values in the hundreds).

By doing so, we aim to satisfy Hypothesis 3 by having a singular agent design be

flexible across domains.

E-Graph Explosion. If the application of a rewrite rule results in the pre-set node limit

or time limit being reached, the agent’s receives the lowest possible reward of −1 as

punishment, and the current episode is terminated. This ensures our agent avoids

unlimited e-graph expansion if at all possible, thereby aligning with Hypothesis 1.

Termination. If the agent chooses the end action when it has yet to improve the cost

of the extracted e-graph expression, it receives the maximum negative reward of

−1. In any other case, ending the episode provides 0 reward. The penalization of

ending without any improvement is used to encourage exploration by preventing the

agent from learning to greedily end the episode before it has discovered rewrites that

deliver positive reward. In scenarios where no improvement is possible, a maximum

step limit is configured so that the agent will eventually terminate regardless.

Rebasing. The reward obtained by the rebase action is always negative, and proportional

to the reduction in the node count of the e-graph in the range (−1, 0). In other words,

a smaller decrease in e-graph size results in a stronger negative reward, as the goal

of rebasing is to shrink the e-graph such that previously unreachable actions can be

applied. The expense of rebasing is that it is a temporarily destructive action as

described in Section 3.3.3, and therefore it should not be needlessly applied.

With the reward engineering of Omelette now fully discussed, we will proceed with de-

scribing the design of the agent’s architecture.

3.3.4 RL Agent Architecture

While Figure 3.3 summarizes the high-level architecture of Omelette, this section will

describes crucial implementation decisions necessary for the RL agent to function in the

domain of equality saturation. Theoretical justification for the inclusion of specific features

is provided, while their actual effectiveness will be tested in Chapter 4: Evaluation.
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Figure 3.3: A high-level overview of Omelette’s architecture.

Choice of RL Algorithm

Notable to our task is that the state space of all possible e-graphs is infinite, making

tabular RL methods impossible as the memory required would be unbounded. Therefore

a Deep Reinforcement Learning (DRL) technique must be used to approximate the value

and policy functions. Proximal Policy Optimization (PPO) [36], a popular policy gradient

method which strikes a balance between sample complexity, implementation simplicity,

and wall-time, is used for the agent primarily due to the stability benefits described in

Section 2.2.2.

While there exist many alternative possible RL algorithms, such as Deep Deterministic

Policy Gradient (DDPG) [18], an additional constraint of our domain is that actions are

discrete rather than continuous, thereby restricting the algorithms we can utilize.

While other architectures which support discrete action spaces, such as Deep Q-Networks

(DQN), which features improved sample efficiency at the cost of additional training time

and memory usage, were considered, PPO was chosen as sample efficiency is not of chief

concern; collecting observations takes as little as single-digit milliseconds in our environ-

ment.

Additionally, a challenge in our work involved adapting the RL algorithm to utilize Graph

Neural Networks; doing so required a custom ground-up implementation, as GNNs are

incompatible with the parallelization and batching strategies used by off-the-shelf RL

implementations. Because of this, the implementation complexity of the algorithm was

a key concern in decision-making; as PPO’s implementation has been comprehensively

studied [1] with multiple reference implementations available, it serves as an ideal base

for our experimental work.

24



GNN Architecture

As previously mentioned, unlike most existing work in RL literature, which operates on

fixed-size observations such as an image of the current frame in a video game [25] or sensor

data from a robot [12], our observations take the form of graphs with varying numbers of

nodes and edges. Because of this, typically used value and policy network architectures

such as MLPs and CNNs are not applicable; a Graph Neural Network is used in their

place, bringing with it a number of additional challenges and considerations.

Graph Convolutional Networks (GCNs) [14], Graph Attentional Networks (GATs) [42],

and Graph Isomorphism Networks (GINs) [47] were all tested for use as the actor and

critic networks in the PPO agent. A 3-layer GAT with 64 neurons per layer was found to

produce the best results, likely due to GAT’s improved expressivity as described in Section

2.3.2. To address initial challenges with non-convergence, the GNN normalization method

GraphNorm, presented by Cai et al. [5], has ben used to significantly stabilize training;

it does so by normalizing hidden representations across nodes using a learnable shift to

avoid degrading expressivity.

As both the actor and critic networks operate at the graph-level (with the critic returning

an estimated value for a given e-graph, and the actor predicting the best action to take

given the state), an aggregation layer must be used to convert the GNN’s learned node-

level representations into graph-level values. For this purpose, a sum pooling aggregation

is used which adds the individual node features before passing them through a 2-layer

MLP of 64 neurons per layer to produce the final predictions. The choice of pooling

function is not arbitrary, as other forms of pooling, such as average or max pooling,

sacrifice the ability to distinguish certain types of graphs. For example, average pooling

would be unable to differentiate between two graphs with identical node representations

where one had twice the nodes of the other.

OpenAI Gym [4] was used to create the RL environment such that other agent architec-

tures can be easily tested upon it. As a contribution of this work, we have assisted in

adding support for graph environments to Gym; as of writing, this has been merged into

the library and is now generally available.

Action Masking

Training time for RL agents scale heavily with the number of actions available at each step.

As our agent design must be flexible across domains which may feature dozens or hundreds

of rewrite rules, action masking is used to prevent rules which are not applicable to the

current e-graph from being selected. This is achieved by masking the actor network’s

logits such that invalid actions have a zero probability of being taken. While the best

way to mask actions is still an active area of research [11], this method was found to be

sufficient for our purposes.

25



3.4 Agent Evaluation Configuration

RL is notorious for its large number of hyperparameters and its high sensitivity to them,

as even slight changes to its initial configuration can yield drastically different outcomes

[39]. Because of this, we have taken efforts to ensure all experiments are reproducible, and

provide all important configuration details used in our evaluation in this section. Due to

computational cost, a full hyperparameter sweep to find optimal values was outside the

scope of this work; nonetheless, a high-level grid search was performed and augmented

with hand-tuning to produce the settings which will be discussed in this section.

Firstly, all experiments were conducted with the same random seed of 1 to ensure fair

comparison between methods, as the PPO algorithm is stochastic. Note that all other

optimization techniques (such as constant folding) have been disabled for all experiments

so that equality saturation is considered in isolation. This significantly increases the

difficulty of optimization tasks, and enables even simple expressions which are readily

interpretable to humans to be challenging to solve.

Training. The agent is trained for 100, 000 steps (split between episodes consisting of

up to 100 steps) for each task. While this may be longer than necessary for some

problems and shorter than necessary to converge for others, it establishes a rea-

sonable baseline for performance. To stabilize training, the agent is trained on 32

environments concurrently to provide it with a wider sample of observations to be

used in each gradient update round; these occur every 128 steps (cumulative across

all parallel environments) using a learning rate of 2.5e− 4. Additionally, while the

agent is provided with a maximum episode length of 100 actions, in practice each

episode’s duration is far shorter; this is because the reward function described in

Section 3.3.3 penalizes unnecessary steps, incentivizing the agent to find the minimal

sequence of actions required for the task at hand.

Evaluation. As PPO produces a stochastic policy, a single rollout is not sufficient to

determine its performance. Therefore for final metrics regarding agent performance,

the learned policy is rolled out five times, with the best result reported in our

evaluation. This is reasonable, as policy roll-outs take on the order of milliseconds

in most cases.

3.4.1 Baselines

egg. The egg equality saturation solver is used as the primary baseline for comparison.

For all experiments, egg is configured to use a maximum e-graph size of 500 nodes

and a time limit of 5 minutes. Although in practice egg can be configured to use a

larger node limit (such as 1, 000), the exact number is not important for a relative

comparison between the RL agent and egg; however, a higher node limit would

greatly increase the memory and compute requirements of these experiments, and
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as such is left to future work.

Random Search. Random search is used as a secondary baseline to show that RL is

truly effective for this task. This is surprisingly important, as random search has

been shown to be competitive with RL across many domains [20]. Ideally, if there is

truly information in the environment which can guide the search, Omelette should

be capable of finding significantly better solutions than a random search ran for the

same number of roll-outs.

3.4.2 Evaluation Criteria

The following metrics are used to evaluate Omelette’s performance against that of egg:

Cost. The cost of the extracted expression, in terms of abstract syntax tree size, is the

primary metric used for evaluation. A lower cost is superior, but note that there

exists a theoretical minimum cost for every task; therefore it cannot be expected

that Omelette achieves superior performance for every expression if egg is also able

to find the optimal.

Rule Applications. It must also be noted that the number of rewrite rule actions is

distinct from the number of rewrite rule applications. This is because, upon picking

a single rewrite rule to run (an action), the rule is then applied to every possible

location within the e-graph. Therefore a single action can result in potentially thou-

sands of rule applications. As the number of rule applications is a better indicator

of runtime duration than rule actions, it is the primary metric reported. A lower

number of rule applications is superior, and indicates that a solution was able to be

found faster.

E-Node Count. The size of the e-graph at the end of optimization, measured in terms

of e-node count, is used to compare how efficiently each method was able to find

its solution within the node limit specified. A lower e-graph size is preferable if the

same or lower cost was able to be achieved within it.

3.4.3 System Configuration

All tests were conducted on an AWS EC2 instance with four vCPU cores, 32GB of RAM,

and an Nvidia T4 GPU with 16GB of VRAM. The machine runs Ubuntu 18.04 and CUDA

10.2.

Omelette consists of approximately 5, 000 lines of Rust and Python code. The e-graph

data structure from egg has been used in our work and bridged into Python such that

the RL agent can interact with it. All code for the work in this thesis is open-source and

available on GitHub 1.

1https://github.com/ZakSingh/omelette
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Chapter 4
Evaluation

This chapter evaluates Omelette’s performance against both egg and a random agent

across a number of tasks in order to test the hypotheses presented in Section 3.3.2. The

objective of this section is to ascertain the following:

1. Whether Omelette can significantly reduce the number of rule applications needed

to obtain the same or better solution than egg, thus answering Hypothesis 1.

2. Whether Omelette is capable of finding lower cost solutions than egg in scenarios

where the node limit is reached before saturation, thus answering Hypothesis 2.

3. Whether Omelette can learn across different languages without requiring modifica-

tion of the agent, thus answering Hypothesis 3.

The section is structured such that first the two domains used for evaluation, consisting

of propositional logic (PROP) and mathematical simplification (MATH), are presented. This

is followed by a high-level overview of the general performance behaviors of the RL agent

over datasets of expressions generated within these two domains. Subsequently, we analyze

when and how Omelette is able to significantly outperform egg on certain tasks due to

the unique advantages of RL and Omelette’s design as discussed in Section 3.3.

4.1 Test Domains

Two distinct domains are used to evaluate Omelette; their specific constitutions will now

be discussed. With each defined rewrite system we specify our method of generating valid

sample expressions which will be used to test the agent. In doing so, we report the number

of operators in each generated expression, the number of e-nodes in the initial e-graph

encoding of each expression, and the initial cost found by egg given the initial e-graph; all

of these metrics serve as rough proxies for expression complexity and therefore difficulty.

However, as previously noted in Section 3.2.2, there exist diabolical simple expressions

which can unpredictably lead to unbounded e-graph growth and non-termination.
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Rule LHS RHS

def imply IM(a, b) OR(NOT(a), b)
double neg NOT(NOT(a)) a
def imply flip OR(NOT(a), b) IM(a, b)
double neg flip a NOT(NOT(a))
assoc or OR(a, OR(b, c)) OR(OR(a, b), c)
dist and or AND(a, OR(b, c)) OR(AND(a, b), AND(a, c))
dist or and OR(a, AND(b, c)) AND(OR(a, b), OR(a, c))
comm or OR(a, b) OR(b, a)
comm and AND(a, b) AND(b, a)
lem OR(a, NOT(a)) True
or true OR(a, True) True
and true AND(a, True) a
contrapositive IM(a, b) IM(NOT(b), NOT(a))

Table 4.1: The rewrite rules available in the PROP domain.

4.1.1 The PROP Domain

PROP is a simple propositional logic language proposed by egg [45]. It features 4 operators

from which expressions can be built (AND, OR, IMPLIES, NOT ), two terminal values

(True and False), and 13 rewrite rules listed in Table 4.1. The cost metric is the depth of

the abstract syntax tree of the extracted expression, thereby incentivizing simplification

as the ultimate goal.

To evaluate solver performance in this domain, 29 expressions have been generated with

a maximum depth of six operators before leaf node terminals are reached; however, the

generator has a 50% chance of choosing a terminal at each level, meaning that most

expressions are not of this maximum size. A summary of expression complexity is provided

in Figure 4.1, illustrating that the generated expressions have a median of 50 operators.

Note that this translates to a slightly lower e-node count in the initial e-graph embedding

as shared terms are de-duplicated. Also shown in the figure is a distribution of the best

cost achievable by extraction from the e-graph without any rewrite rule applications: this

serves as a tangible basis for the relative cost improvements which will be discussed in

the evaluation. Additionally, a breakdown of the operator distributions of each generated

expression is shown in Figure 4.2a, providing a high-level overview of the diversity of tasks

presented to the solver.
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Figure 4.2: The distribution of operators within the expressions generated for each do-
main. Note how different expressions have significantly different constitutions, thereby
posing unique challenges to the solver.
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Rule LHS RHS

comm add ADD(a, b) ADD(b, a)
comm mul MUL(a, b) MUL(b, a)
assoc add ADD(ADD(a, b), c) ADD(a, ADD(b, c))
assoc mul MUL(MUL(a, b), c) MUL(a, MUL(b, c))
sub canon SUB(a, b) ADD(a, MUL(-1, b))
zero add ADD(a, 0) a
zero mul MUL(a, 0) 0
one mul MUL(a, 1) a
add zero a ADD(a, 0)
mul one a MUL(a, 1)
cancel sub SUB(a, a) 0
distribute MUL(a, ADD(b, c)) ADD(MUL(a, b), MUL(a, c))
factor ADD(MUL(a, b), MUL(a, c)) MUL(a, ADD(b, c))
pow mul MUL(POW(a, b), POW(a, c)) POW(a, ADD(b, c))
pow1 POW(x, 1) x
pow2 POW(x, 2) MUL(x, x)
d add DIFF(x, ADD(a, b)) ADD(DIFF(x, a), DIFF(x, b))
d mul DIFF(x, MUL(a, b)) ADD(MUL(a, DIFF(x, b)), MUL(b, DIFF(x, a)))
d sin DIFF(x, SIN(x)) COS(x)
d cos DIFF(x, COS(X)) MUL(-1, SIN(x))
i one INTE(1, x) x
i cos INTE(COS(x), x) SIN(x)
i sin INTE(SIN(X), x) MUL(-1, COS(x))
i sum INTE(ADD(f, g), x) ADD(INTE(f, x), INTE(g, x))
i dif INTE(SUB(f, g), x) SUB(INTE(f, x), INTE(G, x))
i parts INTE(MUL(a, b), x) SUB(MUL(a, INTE(b, x)), INTE(MUL(DIFF(x, a), INTE(b, x)), x))

Table 4.2: The 26 rewrite rules available in the MATH domain.

4.1.2 The MATH Domain

The MATH domain consists of 11 operators: differentiation, integration, addition, subtrac-

tion, multiplication, division, exponentiation, logarithms, square roots, sine, and cosine.

Table 4.2 illustrates the 26 rewrite rules available. There are three terminal values used

on the left-hand-side of the rewrite rules which are therefore encoded into the GNN em-

bedding: 0, 1, and 2. With a significantly larger number of operators and rules than the

PROP domain, the MATH domain is designed to be a more challenging task for the agent

while still remaining easily interpretable to humans. Just as in PROP, the cost metric is

defined as the depth of the abstract syntax tree, incentivizing the solver to simplify the

expression to a minimum number of terms.

25 expressions were generated for evaluating solver performance within the MATH domain.

It should be noted that, due to the larger number of rules and operators at play, memory

constraints necessitated that expressions in this domain be reduced to a maximum depth

of 5 (versus PROP’s 6), resulting in the slightly smaller operator and e-node counts visible

in Figure 4.1. However, this presents an interesting opportunity to determine if the

difficulty posed to the equality saturation solvers is correlated more to input expression

complexity or the complexity of the rewrite rule set. Figure 4.2b displays a summary of the

generated expressions by their operator counts, highlighting the variety of constructions

being tested; note how some inputs feature a wide range of operators, such as expression

7, while others, such as 9, are sparse, thereby posing unique challenges to the solvers.

With the test domains now comprehensively described, the following section will discuss

the results of running Omelette and egg upon them.
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Figure 4.3: Summary of performance metrics for Omelette over the PROP and MATH
datasets, shown as a percentage improvement over egg. Each bar displays the median,
with minimums and maximums shown via whiskers.

4.2 Overview of Results

Figure 4.3 summarizes our results on the PROP and MATH datasets. From the graph, it

is clear that Omelette greatly reduces the final expression cost, the number of actions

taken during optimization, the number of individual applications of those actions, as well

as the size of the e-graph in terms of e-node count in comparison with egg. Notably, we

observe that Omelette is able to significantly reduce optimized expression cost over egg

by an average of 58% in the PROP domain and 13% in the MATH domain. Furthermore,

Omelette is able to accomplish this with, on average, 42% fewer rule applications across

both domains. Additionally, the final e-graph size produced by Omelette is on average

64% smaller than that of egg. Overall, it is clear that Omelette’s learned rewrite rule

sequences are far superior to traditional equality saturation, validating Hypotheses 1 and

2 by finding solutions which are both better and shorter than egg’s.

While the cost reduction achieved in the MATH domain by Omelette is smaller than that of

PROP, this is likely due to the decrease in complexity of the expressions contained within

MATH necessitated due to memory limits as described in Section 4.1.2. In other words,

there is less opportunity for improvement over egg on tasks from this domain; nonetheless,

Omelette still displays strictly superior performance.

Notable within 4.3 is the increased action counts used by Omelette, shown as negative

improvement over egg. However, upon closer analysis, this behavior is required for dis-

covering lower cost solutions; Omelette’s clever avoidance of the node limit enables it

to apply more actions in order to find previously unreachable solutions. Additionally,

as visible within the MATH domain, the large increase in actions does not translate to an

increase in applications: because the e-graph being operated upon stays small, actions are

being matched to fewer e-classes, resulting in fewer applications for more actions. This

ability to work around the node limit to find lower cost solutions will be discussed further

in the subsequent sections.
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Figure 4.4: The distribution of cost improvements found by Omelette (left) and the
relationship between the number of E-Nodes in the input expression and Omelette’s cost
improvement (right).

4.3 Finding Lower Cost Solutions

As stated in Hypothesis 2, a primary objective of Omelette is to find lower cost solutions

than egg. Figure 4.4 displays a histogram of the cost improvements in solutions found by

Omelette over egg, as well as a graph of the relationship between the number of e-nodes

within the input expression and the improvement found. From these results, it is apparent

that Omelette is strictly superior than egg in terms of cost, and its improvement over egg

partially scales with the complexity of the expression to be optimized.

It is interesting to observe on the left plot in Figure 4.4 that cost improvement appears to

be largely all-or-nothing : either the improvement over egg is insignificant (between 0 and

10%) or drastic (over 80%). This highlights the nonlinearity of performance improvements

found through rewriting. Applying additional rules rarely increase performance; rather,

it may be the case that 20 rules must be applied before a single additional rule drops

the cost by 100% by enabling extraction along a path in the e-graph which depends

on these previous rule applications. When egg reaches the node limit before that final,

all-or-nothing rule application can be reached, it will have no improvement upon cost.

This is known as the delayed reward problem in RL literature, and is notoriously difficult

for agents to solve [2]; nonetheless, within this domain, Omelette is able to converge to

the optimal solution. Section 4.4.1, later in this chapter, will provide a case study of

Omelette’s training behavior which illustrates how it is able to achieve this.

Also of note is the presence of outliers within the figure. Notice how some expressions

with fewer than 50 e-nodes achieve an up to 94% cost improvement with Omelette. This

highlights how unpredictable equality saturation tasks may be; even simple expressions

can hit the node limit with egg and therefore benefit greatly from Omelette’s learning-

based approach.
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tremendously improve upon egg in this regard, it is not able to avoid reaching the node
limit in all scenarios.

4.4 Avoiding Node Limits

Figure 4.5 shows the percentage of tasks in each domain which cause egg or Omelette

to reach the node limit. From the graph, we can see that egg’s solutions almost always

terminate due to hitting the node limit, doing so on 100% of tasks from the complex MATH

domain and on 89% of those in PROP. Meanwhile, Omelette fares much better, only being

stopped by the node limit on 16% of expressions in MATH and 3% of those in PROP. These

results highlight Omelette’s ability to effectively avoid running into the node limit across

a variety of tasks, while a comprehensive case study of agent performance on a task in

which it is able to achieve a lower cost than egg by navigating around the node limit

will be provided in Section 4.4.1. However, this plot also demonstrates that Omelette

is not always successful in doing so. This raises a limitation in Omelette’s design: by

applying each chosen rule to every applicable location, there are situations in which it is

not possible to reach the minimum cost without also hitting the node limit if a widely-

applicable rule is the only method of doing so. Although a more granular action structure

which allows the agent to choose where to apply each rewrite may address this, doing so

would drastically increase the action space and therefore hinder training time.

To show how Omelette alters its action plan to avoid the node limit, Figure 4.6 displays

a breakdown of the number of rule applications per input expression compared between

egg and Omelette as a heatmap. Immediately apparent in the chart is the sparsity with

which Omelette selects rules; it is clear that Omelette is capable of altogether ignoring

rules which do not aid in finding a good result, while egg wastes applications (and therefore

an increase in e-graph nodes) upon rules which may not be beneficial at all, thus validating

Hypothesis 1.
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Figure 4.6: The number of rule applications of each rule by input expression in the PROP
domain. White squares denote rules with zero applications. Note how Omelette learns to
only apply rules which are useful for the input expression, and in some cases will apply
them more than egg if needed to find lower cost solutions.

4.4.1 Case Study: Node Limits Prevent Optimal Solutions

This section illustrates Omelette’s training process on a task in which egg is unable to find

the optimal solution within the node limit specified. Hypothetically, Omelette’s RL agent

should be able to learn around the node limit constraint to identify lower cost solutions

through the use of intelligent rewrite rule orderings and the rebase action proposed in

Section 3.3.3.

Expression 8 from the PROP dataset has been chosen for this demonstration; it consists of

254 operators, making it one of the more complex tasks tested. While egg is only able to

reduce the cost from its initial value of 179 to 165, Omelette is able to fully reduce it to

the minimum possible cost of 1. Figure 4.7 displays both the training curves and learned

policy of Omelette. Many interesting observations can be derived from these figures; of

clear note is the high variance exhibited by the agent’s episodic return, cost, and length

curves over the course of training. In fact, it is apparent that the agent has not truly

converged by the time we stop training. This large amount of noise is due to a number
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Figure 4.7: A visualization of Omelette’s training process and a roll-out of its learned
policy for a single episode compared to egg for Expression 8 from the PROP domain.

of factors: firstly, a single rule action can have a dramatic effect on cost; notice how the

top-right plot in the figure shows how Omelette is able to go from 144 cost to 1 with a

single action. This is because of the e-graphs shared encoding of alternative expression

representations; a single rewrite can simultaneously open up hundreds of new possible

extraction paths through the e-graph, one of which may result in a dramatic change in

performance. Therefore noise is to be expected, especially in tasks such as this in which

there are many possible rule choices which reduce cost by varying extents.

Additionally, from the figure we can observe how the agent was able to discover this

massive cost reduction. Cost remains static while episodic return declines until around

5300 episodes, when the new promising rewrite sequence is first seen. Notice how, at that

point, the episodic length jumps to its maximum of 100, then steadily declines. This trend

shows how the agent first expanded its search through the rewrite space (at a significant

cost to its received reward), taking advantage of the purely additive nature of the e-graph,

before progressively shrinking down the episode length as it determines which actions were

necessary to reach the new minimum cost. This reduction process is naturally noisy, as

some modifications to the sequence will unintentionally drop pre-requisites for later rules

which reduce cost, causing the return and cost to vary significantly.

Finally, it is clear from the roll-out of the learned policy compared to that of egg that

Omelette is able to firmly stay within the node limit throughout execution, while egg

reaches the limit by the 8th action step and terminates. This example provides clear

validation for Hypothesis 2 as Omelette is readily able to find a lower cost solution than

egg within the same node limit.
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Figure 4.8: Frequency of rebase operations within Omelette’s policy (left) and a compar-
ison of the median cost reduction (averaged over 5 runs) achieved with and without the
rebase action (right). While the rebase action is only needed for a small number of tasks,
it can cause a sizable improvement in final cost in those cases.

4.5 Effectiveness of the Rebase Action

The rebase action, described in Section 3.3.3, extracts the best expression from the current

e-graph and continues optimization upon it. We theorize that this action should enable

the agent to reach better solutions within the node limit by shrinking the e-graph once

it has grown too large before re-expanding it to access portions of the search space that

were previously unreachable.

To determine the effectiveness of the rebase action, the agent was evaluated both with

and without it available for use. Figure 4.8 displays how frequently rebase occurs in the

learned policy of the agent across different tasks, as well as a performance comparison

on tasks where disabling it affects the final cost. As visible in the figure, rebase is not

always needed by the RL agent for optimization; rather, it is only used when required

to find better solutions. In these scenarios, rebase can sometimes make a tremendous

difference, going from a 28% cost increase over egg with it disabled to a 94% cost decrease

with it enabled on Expression 15 from the PROP dataset. More generally, however, the

cost decrease found via rebase is smaller, with between a 5 to 10% cost reduction being

achieved. While this may not appear meaningful, an improvement of this scale can make

a significant difference in the hot-path of compiled systems. Additionally, this small

improvement indicates that the reward engineering of the agent described in Section 3.3.3

is successful in incentivizing cost reduction over all else, as the agent is willing to sacrifice

reward to utilize the costly rebase action in order to later be rewarded for achieving a

lower cost solution, no matter how small.

From these results, we can conclude that the rebase action is a valuable addition to

the design of the RL agent and is necessary for achieving good results on some tasks.

Additionally, we note that the rebase action does not require the use of RL; equality

saturation solvers could readily implement it to improve performance. However, to do so

would require the design of heuristics or other mechanisms to guide its usage.
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Figure 4.9: Training time distribution by language, as well as the relationship between
node count and training time across both domains.

4.6 Training Time

As the RL agent must learn to solve each task in isolation, its training time is an important

consideration for the practical feasibility of Omelette; this is especially a concern as RL is

known for its tremendous computational costs [3]. As previously mentioned in Section 3.4,

the RL agent is trained for 100, 000 steps on each task. However, this does not translate

to a uniform wall-clock time; as displayed in Figure 4.9, training time varies significantly

across tasks from 3 to 70 minutes and appears to be at least partially dependent on the

size of the final e-graph. Additionally of note is that MATH tasks take considerably longer,

even though they are constituted by fewer nodes; this could be due to the increased node

feature sizes caused by the larger number of rules and operators available in the domain.

While egg benefits from not requiring training, and is therefore able to run within mil-

liseconds to seconds, Omelette remains useful in situations where it is able to find lower

cost solutions than egg. Omelette’s training time may be further improved by introducing

early-stopping to end training when a good solution is reached, or through performance

improvements such as parallelization and supporting multi-GPU training. Nonetheless,

training time remains a significant obstacle for the practical application of RL-based

methods generally.

4.7 Comparison with a Random Agent

To determine if RL is truly effective for this task, we compare it to an agent which

chooses a random action at each step. The percentage improvement in terms of cost over

egg for Omelette and the Random search is provided in Figure 4.10. Clearly, Omelette is

far superior to random search on this task, achieving an average 46% improvement over

egg while random search attains 10%. This result indicates that the solutions found by

Omelette are nontrivial, and that the reward function is successfully guiding it through

the search space to find solutions that would be extremely difficult to reach through a

random search. This results also highlights an interesting phenomenon: random search
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Figure 4.10: A comparison of the cost improvement over egg found by Omelette and a
Random agent across both domains. The median is shown by the bar with the maximum
displayed by the whisker. While Omelette performs significantly better, it is interesting
to note that random search still always performs better than egg.

is superior to egg in the majority of cases. This aligns with the practical limitations

identified in Section 3.2.2; because egg applies rules exhaustively in each iteration, it loses

some optimization opportunities that trivially occur through random search (for example,

by applying a rule twice in a row) when a node limit is reached before those paths can be

added to the e-graph. Because of this, we suggest that future equality saturation solvers

experiment with the use of random rewrite rule ordering as a configuration option.

4.8 Overview

In this chapter, we have evaluated Omelette against both egg and a random agent across

tasks from the PROP and MATH datasets described in Section 4.1. In doing so, we have

verified the hypotheses presented in Section 3.3.2 by demonstrating that Omelette is able

to find lower cost solutions than egg in both the PROP and MATH domains while avoiding

unnecessary growth of the e-graph. In some cases, Omelette is even able to achieve a 100%

cost reduction over egg. Additionally, by finding new optimization paths in both symbolic

and numerical domains, our results support Hypothesis 3’s claim that the RL agent is

flexible across rewrite systems without requiring architectural changes or hyperparameter

tuning. However, to fully justify this hypothesis would require wider testing through the

construction of additional domains outside of the scope of this work.
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Chapter 5
Summary and Conclusions

In this thesis, the various challenges surrounding Equality Saturation have been identified.

We have demonstrated that equality saturation cannot reliably achieve saturation even

in simple domains as unbounded e-graph expansion can occur unepredictably within rule

sets. We argue that equality saturation solvers must carefully consider the order in which

rewrites are applied so as to not go down a path of infinite expansion.

We identify that this challenge is under-considered in existing equality saturation litera-

ture, and present a novel Reinforcement Learning solution, Omelette, to guide the ordering

of rewrite rule applications to the e-graph in order to address this problem.

By evaluating Omelette across both propositional logic and mathematical simplification

tasks, we have shown it to be capable of discovering superior solutions than egg within the

e-graph memory limits specified, while reducing the number of rewrite rule applications

necessary to reach such solutions across the board. Specifically, we have verified the

following hypotheses:

1. The RL agent is capable of learning significantly shorter sequences of rewrite rule

applications needed to obtain solutions for tasks across all domains when compared

to egg, thus preventing e-graph explosion.

2. The agent can learn non-obvious action sequences in order to achieve a lower cost

final expression than existing solvers within the node limit specified.

3. Omelette is capable of optimizing expressions from any language without modification

to the agent, given only a list of rewrite rules and the set of operators available.

Additionally, we demonstrated that random search can often be superior to egg’s ex-

haustive application, supporting our claim that rule ordering is critical for the success of

e-graph construction. Furthermore, we have shown that Omelette significantly improves

upon this random search benchmark by up to 50%, indicating that Deep Reinforcement

Learning for Equality Saturation is effective and warrants further investigation.
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Future Work

Generalization. While we have shown RL for equality saturation to be a promising

new approach, challenges remain. Greatest of these is generalization: it is not

always feasible to train an agent to optimize for each new expression independently.

A generalizable agent, trained using behavioral cloning [41] or multi-task learning

[49], would ideally be capable of solving unseen optimization tasks after having

been trained on a corpus of known problems. Accomplishing this would enable RL

to be widely used within real-world equality saturation solvers, as a policy could

ideally be learned in advance then distributed for high-speed roll-outs by clients

without additional training. While strides have recently been made in multi-task

learning [33], it remains an under-discussed topic when combined with Graph Neural

Networks. Additionally, a significant obstacle in accomplishing this goal is RL’s high

computation requirements; further work would need to be done to support multi-

GPU training and other performance optimizations to make this feasible.

Additional Domains. While we have shown Omelette to be flexible in both numeri-

cal and purely symbolic domains, this merely scratches the surface of the possible

problem spaces equality saturation could be used for. With this proof-of-concept

established, future work may attempt applying Omelette to real-world tasks such

as neural network optimization [13, 48] or automated theorem provers. This step is

crucial in proving the wider effectiveness of RL as a means of term rewriting; how-

ever, scaling Omelette to these more complex languages will require larger compute

resources as with generalization.

Model-Based RL. As discussed in Section 3.3.4, Proximal Policy Optimization (PPO),

a stochastic on-policy algorithm, has been used to train Omelette’s RL agent. While

PPO was chosen due to its reliability (as described in Section 2.2.2), novel model-

based RL methods may be suitable for application to Omelette now that the dy-

namics and limitations of E-Graph expansion are better understood. As this task

is both fully observable and deterministic, it should theoretically be possible for

the agent to plan its decisions into the future with algorithms such as DeepMind’s

AlphaGo and AlphaZero [37]. Exploring these alternative architectures, as well as

finding means of incorporating Graph Neural Networks within them, represents a

promising avenue of future research.
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[17] Daniel Kästner and Marc Langenbach. Code optimization by integer linear programming. pages
122–136, 03 1999. ISBN 978-3-540-65717-0. doi: 10.1007/978-3-540-49051-7 9.

[18] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2015. URL
https://arxiv.org/abs/1509.02971.

[19] Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In International Conference on Learning Representations, 2020. URL https:

//openreview.net/forum?id=BJe1334YDH.

[20] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive
approach to reinforcement learning, 2018. URL https://arxiv.org/abs/1803.07055.

[21] Nina Mazyavkina, Sergei Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for
combinatorial optimization: A survey. CoRR, abs/2003.03600, 2020. URL https://arxiv.org/

abs/2003.03600.
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